What, Why and How

Visual Analytics Framework


John Alexis Guerra Gómez| ja.guerrag[at]uniandes.edu.co| @duto_guerra
Jose Tiberio Hernández | jhernand[at]uniandes.edu.co
Universidad de los Andes


http://johnguerra.co/lectures/visualAnalytics_fall2017/02_What_Why_How/

Based onslides from Tamara Munzner

Visual Analytics Framework

Tables

  • Attributes
  • Items (rows)

Networks and Trees

  • Items (nodes)
  • Links
  • Attributes

Fields

  • Continuous
  • Sampled
  • e.g. Brain scan

Geometry

  • Spatial
  • 2D or 3D
  • Inherent shape

Example

SpaceTree

http://www.cs.umd.edu/hcil/spacetree/

SpaceTree

TreeJuxtaposer

https://www.cs.ubc.ca/~tmm/papers/tj/

TreeJuxtaposer

Marks and channels

What marks and channels?

What marks and channels?

What marks and channels?

What marks and channels?

Effectiveness and Expressiveness

Expressiveness

  • Visual encoding should express all of, and only, the information in the dataset
  • Ordered data should be shown in a way we perceive as ordered
  • Match channel and data characteristics

Effectiveness

Encode most important attributes with highest ranked channels

[Automating the Design of Graphical Presentations of Relational Information. Mackinlay. ACM Trans. on Graphics (TOG) 5:2 (1986), 110–141]

Where does the ranking come from?

  • Accuracy
  • Discriminability
  • Separability
  • Popout

D3 v4 Tutorial

Step 0: Setup

  • Add https://d3js.org/d3.v4.min.js to external resources

Step 1: Selections

Step 2: Data binding (create)

Step 3: Update and remove

Step 4: svg

Step 5: Scales

Step 6: Axis

Step 7: Transitions

Step 8: More complex data

Step 9: Merge

Step 10: Change mark

Step 11: Add dimension